
ECE 174 - Homework # 5 Solutions

1. (a) The MLE, x̂MLE, is determined as

x̂MLE = arg min
x
{− ln p(y |x)} = arg min

x

2∑
i=1

1

σ2
i

(yi − x)2 = arg min
x
‖y − Ax‖2W ,

where

y =

(
y1
y2

)
, A =

(
1
1

)
, W =

(
w1 0
0 w2

)
=

(
1
σ2
1

0

0 1
σ2
2

)
.

We have that the adjoint operator is given by

A∗ = ATW = (w1 , w2) =

(
1

σ2
1

,
1

σ2
2

)
,

so that,

A∗A = w1 + w2 =
1

σ2
1

+
1

σ2
2

,

which is invertible (as we already knew since A has full column rank). Continuing,
we obtain,

(A∗A)−1 =
1

w1 + w2

=
σ2
1σ

2
2

σ2
1 + σ2

2

,

and

A+ = (A∗A)−1A∗ =

(
w1

w1 + w2

,
w2

w1 + w2

)
=

(
σ2
2

σ2
1 + σ2

2

,
σ2
1

σ2
1 + σ2

2

)
.

Thus,
x̂MLE = A+y = α1 y1 + α2 y2 ,

where

0 ≤ αi =
wi

w1 + w2

=
σ2
i

σ2
1 + σ2

2

≤ 1 , for i = 1, 2 ,

and α1 + α2 = 1. This shows that the MLE is a so–called convex combination
(i.e., a normalized weighted average) of the measurements y1 and y2. Recalling
that wi = 1

σ2
i

gives the precision of the measurement yi, we see that the weight αi

is a measure of the normalized (or relative) precision.

(b) In the limit that σ2
1 → 0 (w1 → ∞), we see from the general solution derived

above that x̂MLE → y1. This makes sense as σ2
1 → 0 (w1 →∞) corresponds to y1

becoming a perfect, non-noisy (infinitely precise) measurement of the unknown
quantity x. In the limit that σ2

1 → ∞, (w1 → 0)the general solution shows that
x̂MLE → y2. This makes sense as σ2

1 → ∞ (w1 → 0)corresponds to the first
measurement becoming so noisy (so imprecise) that it is worthless relative to the
second measurement.
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(c) In the case that σ2
1 = σ2

2 ≡ σ2 (w1 = w2 ≡ w) we have,

x̂MLE = arg min
x
‖y − Ax‖2W = arg min

x

1

σ2
‖y − Ax‖2 = arg min

x
‖y − Ax‖2 ,

the last expression being an unweighted least–squares problem. Using the condi-
tion σ2

1 = σ2
2 (w1 = w2), the general solution derived earlier becomes,

x̂MLE =
1

2
(y1 + y2) .

This solution makes sense because the condition σ2
1 = σ2

2 means that the two
measurements are equally precise, w1 = w2, so that we have no rational reason to
prefer one measurement over the other. This is because the errors in the two mea-
surements are additive, independent, zero mean, and identically symmetrically-
distributed measurement errors. This symmetry condition yields a linear estima-
tor which is the symmetric sample–mean solution.1

2. Note that E {yi} = αti.

(a) The least–squares problem to be solved is

min
α
‖y − Aα‖2 ,

where

y =

y1
...
ym

 and A =

 t1
...
tm

 .

The least–squares solution is

α̂(m) = A+y = (ATA)−1ATy =

m∑
i=1

tiyi

m∑
i=1

t2i

.

(b)

E {α̂(m)} =

m∑
i=1

tiE {yi}
m∑
i=1

t2i

= α

m∑
i=1

t2i

m∑
i=1

t2i

= α .

(c)

Var {α̃(m)} = σ2(ATA)−1 =
σ2

m∑
i=1

t2i

→ 0 as m→∞ .

1In advanced courses we would say that “the solution to the optimal linear estimator is obvious from
symmetry.”
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3. Vocabulary. The relevant definitions can be found in your class lecture notes and/or
in the lecture supplement handouts.

4. Scalar Generalized Gradient Descent Algorithms.

Note that in the scalar case the loss function is

`(x) =
1

2
(y − h(x))2 .

Also the gradient of `(x) is just the derivative of `(x) with respect to x,

`′(x) = ∇`(x) =
d

dx
`(x) = −h′(x) (y − h(x)) ,

where h′(x) = d
dx
h(x). Note also that the second derivative of the loss function is

`′′(x) = h′2(x)− h′′(x) (y − h(x)) .

(a) Gradient Descent Method.

x̂k+1 = x̂k − αk`′(x̂k) = x̂k + αkh
′(x̂k) (y − h(x̂k)) ,

where the step size αk > 0 is used for convergence control. It is evident that
Qk = 1 for all k.

(b) Gauss’ Method (Gauss–Newton Method).

To find a correction to the current estimate x̂, we linearize the nonlinear inverse
problem y = h(x) about the point x̂,

y ≈ h(x̂) + h′(x̂)(x− x̂) = h(x̂) + h′(x̂)∆x ,

where ∆x = x− x̂, and find a solution which is optimal in the least–squares sense
for this linearized problem. Note that the loss function for this linearized problem
is

`gauss(x) =
1

2
(y − [h(x̂) + h′(x̂) (x− x̂)])

2
=

1

2
(∆y − h′(x̂)∆x)

2
= `gauss(∆x) ,

where ∆y = y − h(x̂). Also note that because

x = x̂+ ∆x ,

where x̂ is given and fixed, it is evident that optimizing over x is equivalent to
optimizing over ∆. An equivalent problem, then, is to find the correction ∆x
which is optimal in the least–squares sense by minimizing `gauss(∆x) with respect
to ∆x.
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The solution is

∆x =
1

h′(x̂)
∆y =

1

h′(x̂)
(y − h(x̂)) ,

assuming that h′(x̂) 6= 0. Incorporating a step size α > 0 for convergence control,
yields

∆x = α(x̂)
1

h′(x̂)
(y − h(x̂)) = α(x̂)Q(x̂)h′(x̂) (y − h(x̂)) ,

where

Q(x̂) =
1

h′2(x̂)
.

This yields the iterative algorithm,

x̂k+1 = x̂k + αk
1

h′(x̂k)
(y − h(x̂k)) = x̂k + αkQkh

′(x̂k) (y − h(x̂k))

where

Qk =
1

h′2(x̂k)
.

(c) Newton’s Method.

To find a correction to the current estimate x̂ we expand the loss function `(x)
about x̂ to second order and then minimize this quadratic approximation to `(x).
With ∆x = x− x̂, the quadratic approximation is

`(x) ≈ `quad(x) = `(x̂) + `′(x̂)∆x+
1

2
`′′(x̂)(∆x)2 = `quad(∆x) .

Note that `quad(x) = `quad(∆x) can be equivalent minimized either with respect to
x or with respect to ∆x. If we take the derivative of `quad(∆x) with respect ∆x
and set it equal to zero we get

∆x = − `
′(x̂)

`′′(x̂)
=

h′(x̂) (y − h(x̂))

h′2(x̂)− h′′(x̂) (y − h(x̂))
. (1)

If we multiply the correction ∆x by a step size α > 0 in order to control conver-
gence we obtain the iterative algorithm

x̂k+1 = x̂k + αkQkh
′(x̂k) (y − h(x̂k)) ,

where

Qk =
1

h′2(x̂)− h′′(x̂) (y − h(x̂))
.

Comparing the values of Qk for the Gauss method and the Newton method,
we see that when y − h(x̂k) ≈ 0 the two methods become essentially
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equivalent.2 Also note that when h′′ ≡ 0 the two methods become exactly
equivalent.

5. Simple Nonlinear Inverse Problem Example.

Let y denote the known number for which you wish to determine the cube root. Let
x denote the unknown cube root of y. We need a relationship y = h(x), which is
obviously given by h(x) = x3. This relationship defines an inverse problem that we
wish to solve. (I.e., given the relationship y = h(x) = x3 and a value for y determine a
corresponding value for x.) The relevant derivatives needed to implement the descent
algorithms are

h′(x) = 3x2 and h′′(x) = 6x .

2This fact also holds for the more general vector case. For example, because this latter situation holds for
the GPS computer assignment, the Gauss-Newton method used in that assignment is essentially equivalent
to the Newton method and therefore has the very fast convergence rate associated with the Newton method.
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