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(a)

ECE 174 - Homework # 5 Solutions

The MLE, Zyig, is determined as
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We have that the adjoint operator is given by

where
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so that,
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which is invertible (as we already knew since A has full column rank). Continuing,
we obtain,
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Taee = ATy = a1 y1 + az v,
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and oy + as = 1. This shows that the MLE is a so—called convex combination
(i.e., a normalized weighted average) of the measurements y; and y,. Recalling
that w; = (% gives the precision of the measurement y;, we see that the weight «;

is a measure of the normalized (or relative) precision.

In the limit that o — 0 (w; — 00), we see from the general solution derived
above that Ty.; — y;. This makes sense as o7 — 0 (w; — o) corresponds to 4
becoming a perfect, non-noisy (infinitely precise) measurement of the unknown
quantity x. In the limit that o7 — oo, (w; — 0)the general solution shows that
Tyee — Y2. This makes sense as 07 — oo (w; — 0)corresponds to the first
measurement becoming so noisy (so imprecise) that it is worthless relative to the

second measurement.



(c) In the case that 0? = 02 = 02 (w; = wy = w) we have,
N . 1 :
Taee = argmin ||y — Az|[f, = argmin — ||y — Az||> = argmin ||y — Az|*,
T T O T

the last expression being an unweighted least—squares problem. Using the condi-

tion 07 = 02 (w; = wy), the general solution derived earlier becomes,

N 1
TymLE = 5 (yl + y2) .

This solution makes sense because the condition 07 = 02 means that the two

measurements are equally precise, w; = ws, so that we have no rational reason to
prefer one measurement over the other. This is because the errors in the two mea-
surements are additive, independent, zero mean, and identically symmetrically-
distributed measurement errors. This symmetry condition yields a linear estima-
tor which is the symmetric sample-mean solution.’

2. Note that E{y;} = at;.
(a) The least—squares problem to be solved is
min [ly — Aa]?,

where
Y1 131
y=1 : and A=
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The least—squares solution is
> tiyi
a(m) = Aty = (ATA) ATy = F—.
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'In advanced courses we would say that “the solution to the optimal linear estimator is obvious from
symmetry.”

Var {a(m)} = o*(ATA)™! = —0 as m— o00.




3. Vocabulary. The relevant definitions can be found in your class lecture notes and/or
in the lecture supplement handouts.

4. Scalar Generalized Gradient Descent Algorithms.

Note that in the scalar case the loss function is

1
te) = 5 (v~ (@)
Also the gradient of ¢(x) is just the derivative of ¢(z) with respect to z,
/ d /
O(z) = Vl(z) = ——l(z) = —I'(z) (y = h(z)) ,
where A'(z) = Lh(z). Note also that the second derivative of the loss function is

"(w) = h*(x) = h"(z) (y — h()) .
(a) Gradient Descent Method.
/w\k—i-l = /l‘\k - ozkfl(/.’fk) = /l‘\k + Oékh,(i‘\k) (y - h(/l‘\k)) s

where the step size o > 0 is used for convergence control. It is evident that

Qr = 1 for all k.
(b) Gauss’ Method (Gauss—Newton Method).

To find a correction to the current estimate T, we linearize the nonlinear inverse
problem y = h(z) about the point Z,

Yy~ h(Z)+ 1(3) (@ - 7) = h(@) + W(3) Az,

where Az = x — 7, and find a solution which is optimal in the least—squares sense
for this linearized problem. Note that the loss function for this linearized problem
is

o) = 5 (5~ [B(E) + W (@) (2~ D)) = 5 (g — W (@A) = (pn(Aa),
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where Ay =y — (7). Also note that because
=7+ Az,

where 7 is given and fixed, it is evident that optimizing over z is equivalent to
optimizing over A. An equivalent problem, then, is to find the correction Ax
which is optimal in the least—squares sense by minimizing ¢ Ax) with respect
to Ax.

gauss (



The solution is
1 1

Ar= s Ay = s (0= (@)

assuming that h'(Z) # 0. Incorporating a step size a > 0 for convergence control,
yields

Ar = (@) iz (v = h(E) = 0() QEN(E) (v~ h(@))
where )

This yields the iterative algorithm,

=N N 1 . N )~ Y
Thy1 = T + @km (y — h(Tr)) = 21 + @il (Zk) (y — h(Ty))

where

=Gy

Newton’s Method.

To find a correction to the current estimate T we expand the loss function ¢(x)
about T to second order and then minimize this quadratic approximation to ¢(z).
With Az = x — T, the quadratic approximation is

(@) ~ Lys(2) = 0(F) + 0(F) Az + %ﬂ’@)(m)z (D).

Note that £.q(7) = ly.a(Ax) can be equivalent minimized either with respect to
x or with respect to Az. If we take the derivative of £,.q(Ax) with respect Ax
and set it equal to zero we get

'(7) W(z) (y — h(z))

AT EE) T R - R (o — hE) W

If we multiply the correction Az by a step size o > 0 in order to control conver-
gence we obtain the iterative algorithm

Tpp1 = Tp + Oékah/(/x\k) (y — h(Zr)) ,

where

1

U= @) ) (g — @)

Comparing the values of ), for the Gauss method and the Newton method,
we see that when y — h(z)) ~ 0 the two methods become essentially

4



equivalent.? Also note that when h” = 0 the two methods become exactly
equivalent.

5. Simple Nonlinear Inverse Problem Example.

Let y denote the known number for which you wish to determine the cube root. Let
x denote the unknown cube root of y. We need a relationship y = h(x), which is
obviously given by h(z) = z®. This relationship defines an inverse problem that we
wish to solve. (Le., given the relationship y = h(z) = 2 and a value for y determine a
corresponding value for x.) The relevant derivatives needed to implement the descent
algorithms are

R'(z) =32* and A’(z) =6z.

2This fact also holds for the more general vector case. For example, because this latter situation holds for
the GPS computer assignment, the Gauss-Newton method used in that assignment is essentially equivalent
to the Newton method and therefore has the very fast convergence rate associated with the Newton method.



